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1. Data   

 

Image Data 

  

 The two cost effective data sets available for use were Landsat Thematic Mapper (TM) and 

National Agriculture Imagery Program (NAIP) imagery.  Both of these datasets have 

properties that add value to the mapping work.  Although the spatial resolution of Landsat TM 

is coarse at 30 meters, it has spectral properties that exceed what are offered in the high 

resolution NAIP imagery.  These spectral properties are useful in discerning different types of 

vegetation and vegetative state.   Landsat has a quick return cycle, repeating inventory of the 

same area every 16 days.  The footprint of Landsat is large (each scene covering 

approximately 185 sq kilometers) which makes for consistent data sets over large areas — 

important for larger area projects such as the B-D VMap.  Because of the high spatial 

resolution (1 meter), the NAIP imagery available offered properties that the Landsat could 

not.   The polygon or map units delineated from these data (see section on ‗image 

segmentation‘ for a further description of this process) are very accurate as compared to what 

can be accomplished from Landsat, and the secondary statistics derived from this imagery are 

useful for better delineation of the various cover types that are mapped.  The downside of this 

imagery are that each image is small (approximately 20,000 acres) and so digital numbers can 

vary across larger areas.  Models (see section on ‗Model Areas‘ for description of models) 

were kept small in the project to minimize this source of error.  The following are the imagery 

used in the B-D VMap project.    

  

  Landsat Thematic Mapper imagery:  A mid-summer image  (July/August) was selected to 

capture ―peak green‖ vegetation fully mature prior to senescence. The Landsat TM images 

(TM bands 1,2,3,4,5, and 7) used in the project for each model were collected in August of 

2009.  All TM images were orthorectified to the color infrared NAIP imagery used in the 

project and radiance reflectance corrected.     
 

 1 meter National Agriculture Imagery Program (NAIP) color infrared and natural imagery: 

NAIP imagery used in the project are color infrared (IR) digital orthorectified photos of 

Montana with the images acquired in summer 2009. The original digital images were then 

processed to an IR product with a 1 meter ground sample distance (GSD) and rectified to 

National Mapping Standards at the 1:24,000 scale. This imagery was sampled back to 5m 

using ERDAS Imagine and used for segmentation and image processing where appropriate.  

Visit http://gisportal.mt.gov/Portal/DiscoveryServlet for complete metadata on this imagery.   

  

Ancillary Data and Image Derivatives 

 In addition to the imagery, the following were also important inputs into the mapping 

process.   All of these were produced from the Landsat or NAIP imagery or 10 meter Digital 

Elevation Models (DEM‘s). 

  

1. 10 meter National Elevation Data (NED)— (received from the Forest Service Remote 

 Sensing Applications Center) were used in eCognition for species modeling and also 

 used to classify portions of the non-forest cover (see ‗methodology‘ section for classes 
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 mapped) with the Random Forest tree predictors using Rv2.7.2 (see ‗methodology 

 section for useage of Random Forest‘s in VMap project. 

  

2. Solar Radiation — used to model non-forest cover (see methodology for  the cover types 

 mapped) and to create the individual tree dominance type probability surfaces.  The 

 function is part of ArcGIS Spatial Analyst and is a calculation of how much sun an 

 area receives over a period of time.  Since radiation can be greatly affected by topogra

 phy and surface features, a key component of the calculation algorithm  requires genera

 tion of an upward looking hemispherical viewshed for every location in a digital eleva

 tion model.  The input DEM used or this calculation was 30 meter National Elevation 

 Data (did not use 10 meter for computation restrictions) using all default parameters.  

 Time configuration was set to ―whole year with monthly intervals‖ for Year 2005. See 

 http://webhelp.esri.com/arcgisdesktop/9.2/index.cfmTopicName=Area_Solar_Radiation 

 for a more detailed description of this function.   

  

3. TRASP—- used to model non-forest cover and to create the individual tree dominance type 

 probability surfaces.  The circular aspect variable is transformed to a radiation index 

 (TRASP) in this calculation.  This transformation assigns a value of zero to land ori

 ented in a north-northeast direction, (typically the coolest and wettest orientation), and a 

 value of one on the hotter, dryer south-southwesterly slopes.The result is a continuous 

 variable between 0 - 1 (Roberts and Cooper 1989). 

     

                   TRASP= 1 - cos((pi / 180)(aspect - 30)) 

                                                   2 

  

4. Slope—- used to model non-forest cover and to create the individual tree dominance type 

 probability surfaces.  Percent Slope calculated from the 10 meter NED data using ER

 DAS Imagine. 

  

5. CTI—-- used to model non-forest and to create the individual tree dominance type prob

 ability surfaces.CTI is a steady state wetness index. The CTI is a function of both the 

 slope and the upstream contributing area per unit width orthigonal to the flow direction. 

 CTI was desigined for hillslope catenas. Accumulation numbers in flat areas will be 

 very large and CTI will not be a relevant variable. CTI is highly correlated with several 

 soil attributes such as horizon  depth(r=0.55), silt percentage(r=0.61), organic 

 matter content(r=0.57), and phosphorus(r=0.53) (Moore et al. 1993). 

  

                     The implementation of CTI can be shown as: 

  

                            CTI = ln (As / (tan (beta)) 

  

 where As = Area Value calculated as (flow accumulation + 1 ) * (pixel area in m2)

 and beta is the slope expressed in radians. 

  

6.  Minimum Texture—- used in eCognition for segmentation of each model and for model

 ing.  The texture image characterizes the spatial homogeneity or heterogeneity of each 
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 pixel based on its surrounding neighbors.   Minimum texture, developed by Woodcock 

 and Ryherd (1996), calculates a minimum variance from an adaptive window around 

 each pixels as it‘s measure of the texture.  The resulting texture image is a composite of 

 the minimum variance values calculated for each pixel.  As shown by Coburn and Rob

 erts (2004), three bands of image texture can improve classification overall by 13  

 percent with 4 to 8 percent improvement when compared to use of a single band  of 

 texture.  The image used to create texture for each of the models was a principal  

 component image of the 1m color infrared NAIP imagery.   The texture bands were   

 created using adaptive windows of 5x5, 15X15, and 25X25 and the resultant texture  

 images were then resampled to 5m.      

  

7. Mean Texture—- used in eCognition for segmentation and classification of the models.    

 Mean texture was calculated from a 5m principal component of each CIR NAIP image 

 using a mean variance using adaptive windows of 3X3, 5X5, and 9X9. 
     
8. Tassel Cap Transformations—-Tassel Cap (TC) was calculated for all the Landsat  

 imagery used in eCognition modeling process . TC is a linear transformation of the  

            reflectance calculated TM data that rotates the data structure such that the majority of 

 the information contained in the 6 bands will occupy 3 dimensions that are directly  

 related  to the on-the-ground physical scene characteristics (Kauth and Thomas, 1976.). 

 These dimensions define planes of soils (brightness), vegetation (greenness), and a 

 transitional zone that relates to canopy and soil moisture (wetness). These three  

 dimensions capture 97%+ of the data variation in the 6 TM bands and can enable the 

 discernment of key forest attributes (i.e., species, age, and structure.)   

  

9. NDVI—The Normalized Difference Vegetation Index (NDVI) is calcu lated as the  

 normalized difference between the NIR and the Red bands (NIR - R)/(NIR + R). NDVI 

 was used in the eCognition modeling process.  The NDVI is probably the most widely 

 used vegetation index and has been shown to be related to a number of different biomass 

 variables. Simple vegetation indices such as  NDVI, however, provide an inadequate 

 representation of complex vegetation cover as they are related only to the total amount 

 of above-ground green leaf biomass, and give no indication of the types of vegetation 

 present. Vegetated areas will generally yield a higher NDVI value than rock, which will 

 have values greater than that of clouds, snow, and water.  The 5meter NAIP imagery 

 was used to calculate NDVI and used in eCognition where applicable.   In other cases, 

 NDVI was calculated for the Landsat TM imagery was used in the modeling process. 
  

9. Principal Component—used in eCognition modeling.   This was calculated using ERDAS 

 Imagine‘s function to create six bands of principal component.   Principal component 

 (PCA) involves a mathematical procedure that transforms a number of possibly  

 correlated variables into a smaller number of uncorrelated variables called principal 

 component.   The first principle component accounts for as much of the variability in the 

 data as possible.   PCA has proven to be of value in analysis of multispectral data (Press 

 et al. 1992.)  The transformation of the raw remote sensor data using PCA can result in 

 images more interpretable than the original data.      
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2. Modeling Unit Construction 

 

Model Areas 

 To make the 30 meter Landsat TM and the 1 meter NAIP data useable for image processing, 

both sets of data were resampled to 5 meters using a cubic convolution resampling.   At 5m 

resolution, data sets are still quite large, and given the limits of the image processing software 

used (eCognition), model areas were created no larger than 450,000 acres.  The larger basis 

for the stratification of these models coincides with the USDA Forest Service National 

Hierarchical Framework of Ecological Units (Bailey et al. 1994.)  Beyond these units, models 

were further subdivided to Forest Service district or other management units and kept to a size 

manageable by the software used to process it.  Fifteen models were created to cover the 

entire B-D National Forest, though two models (2901 and 2902) were mapped previously as 

part of the Eastside VMap.   

  

Image Segmentation  

 

Image segmentation is the process of combining the pixels within digital images into spatially 

cohesive units, or regions, thereby creating image objects.  These objects represent discrete 

areas in the image.  This segmentation and merging process is influenced by the variance 

structure of the image data and provides the modeling units that reflect life form composition, 

stocking, tree crown size differences, and other vegetation and/or landcover characteristics 

(Haralick and Shapiro 1985, Ryerd and Woodcock 1996).  Image segmentation was used in 

the eastside VMap to delineate vegetative features using Definiens‘ eCognition software 

version 4.06.  The segmentation process in eCognition is based on both the local variance 

structure within imagery and shape indices.  These image objects effectively depict the 

elements of vegetation and landcover pattern on the landscape (McDonald et al. 2002.)  

Figure (3) illustrates the image segmentation-based depiction of landscape pattern displayed 

over 1m NAIP imagery. 

   

Figure 3.  Example of image segmentation from eCognition Software  (image segmentation 

draped over 1m color infrared NAIP imagery.) 



5 

 

3. Training Data 

 

Any remote sensing product is only as good as the ground data associated with it.  Training 

data is used to build the relationships between ground based phenomena and the spectral 

information contained in a remotely sensed image.  Using these known areas, then, it is 

possible to construct algorithms to predict and label the unknown areas within a study area.     

  

 For the project, the image objects, or polygons, were the units used to collect each training 

site.  Collection of the training data was completed using various methods but primarily it was 

a ground-based sampling method.  In previous mapping efforts training data collection relied 

heavily on the use of aerial photography.  On the B-D, however, the photos are almost 20 

years old and were not deemed current enough to provide reliable training data in light of the 

recent beetle infestations.  Some tree data could be interpreted from the 1m NAIP if personnel 

were familiar with the area (i.e., Dominance Type and Tree Canopy Cover).  All of the non-

forest data was collected from field sampling (contact Northern Region Geospatial Group for 

non-forest field sampling techniques.)  

  

 

 

LANDSCAPE STRATIFICATION 
 

One of the primary goals of our field activities is to capture the variation of landscape 

characteristics occurring on the Beaverhead-Deerlodge National Forest (B-D NF). To begin our 

interpretation of landscape variability we gathered individual datasets representing the climatic, 

geologic, vegetative, and topographic characteristics encompassing the B-D National Forest 

(Table 1). The data were assembled from a variety of sources, and their original format spanned 

multiple scales and data models.  

 
Table 1. Landscape stratification input data, sources, and resolution 

 

Characteristic Source Type Resolution 

Topography National Elevation Dataset Raster 30m 

Precipitation DAYMET Raster 1000m 

Heat Units DAYMET Raster 1000m 

Land Type Association R1 LTA Vector ??? 

State of MT Geology MT NRIS Vector 1:500,000 

Ecoregion, L4 EPA Vector  

Vegetation SILC3 Raster 30m 

 

For use in our landscape stratification scheme, the data were all converted to raster format, with 

30 meter grid cells. We found this resolution to be appropriate because it afforded sufficient 

detail over the roughly 5,000,000 acres comprising the B-D, while also being computationally 

efficient. Vegetation modeling units of the B-D NF are given below in Figure 1. 
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Figure 1. Vegetation modeling units within the Beaverhead-Deerlodge National Forest 

 

When interpreting the various data we focused on landscape characteristics that have the 

potential to influence vegetation patterns. For instance, elevation, precipitation, temperature, and 

parent materials are elemental drivers of vegetative distributions. Many of the layers used to 

describe biophysical properties of the landscape present data in a continuous fashion. To 

generalize the provided level of detail, layers of continuous data were reclassified into broad but 

meaningful ranges. For example, data from the National Elevation Dataset (NED) originally 

provided continuous elevation estimates rounded to the nearest foot, but this level of detail was 

difficult to work with. We therefore reclassified the dataset into three classes, essentially 

representing low, medium, and high elevation landscape units. A similar procedure was also 

applied to the precipitation and temperature datasets, and is illustrated below using elevation as 

an example. The Natural Breaks classification algorithm was used to parse the elevation 

histogram into the specified number of classes, which in the example below was three (Figure 2).  
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A) Continuous Elevation in 

ft. 
B) Classification Algorithm 

C) Low, Medium, High 

Elevation  

 
Figure 2. Classification of continuous elevation data using the natural breaks algorithm to produce three classes 

ranging from 1) 3,000 – 6,500 2) 6,501 -8,00 3) and 8,000 – 11, 395 ft, shown in brown, blue, and pink, respectively 

 

A high degree of correlation between the elevation, precipitation, and temperature datasets was 

detected. Considering the degree of layer correlation and that elevation was a variable in the 

algorithm used to create the climate estimates, we chose to use the pure elevation dataset for 

landscape classification. As such, elevation data allowed us to vertically stratify the landscape 

into three general classes, representing low, moderate, and high elevation zones.  

 

Further division of the landscape focused on the horizontal distribution of features. While we 

considered mapped distributions of geomorphic land types and their various associations (R1 

LTA), regional geology, and Level 4 Ecoregion data layers, we found a basic classification of 

forest versus non-forest lifeforms to be the most meaningful and straight-forward in its 

interpretation. As such, the latest Satellite Image Landcover Classification (SILC3) dataset was 

reduced into two categories describing the basic forest and non-forest lifeforms within the B-D 

NF.  
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A) SILC3 with all Veg. 

Classes 
B) Classification Algorithm 

C) SILC3 Reclassified to 

Lifeform  

 
Figure 3. Reclassification of the SILC3 herbaceous, dry shrub, deciduous tree, coniferous tree, and rock types into a 

basic forest versus non-forest lifeform map.  

 

We arrived at our final land unit stratification by combining both the vertical and horizontal 

elements of the landscape. The vertical elements represented the low, moderate and high 

elevation classes, and the horizontal elements were composed of forest and non-forest vegetation 

types.  

 

   
A) Lifeform with 2 classes B) Elevation with 3 classes C) ELE-LFM with 6 classes  

 
Figure 4. Development of the final landscape stratification dataset based on forest and non-forest lifeforms and 

elevation zones. Two classes of A) lifeform were combined with three classes of B) elevation to create 6 unique 

combinations (strata) of vertical and horizontal landscape features. 
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By sampling vegetation within the unique combinations of forest and non-forest types over a 

range of elevation classes should ensure that we cover the range of expected environmental 

conditions in the B-D landscape.  

 
Table 2. Description and interpretation of the integrated Beaverhead-Deerlodge NF Strata map inputs and final 

unique combinations of lifeform and elevation classes. 

 

STRATA Lifeform Input Elevation Input Interpretation 

11 Class 10 (Non-Forest) Class 1 (0 - 6,500 ft) Non-Forest at low elevation 

12 Class 10 (Non-Forest) Class 2 (6,500 - 8,000 ft) Non-Forest at mederate elevation 

13 Class 10 (Non-Forest) Class 3 ( 8,000 - 11,395 ft) Non-Forest at high elevation 

21 Class 20 (Forest) Class 1 (0 - 6,500 ft) Forest Lifeform at low elevation 

22 Class 20 (Forest) Class 2 (6,500 - 8,000 ft) Forest Lifeform at moderate elevation 

23 Class 20 (Forest) Class 3 ( 8,000 - 11,395 ft) Forest Lifeform at high elevation 

 

 
Table 3. Spatial characteristics of Beaverhead-Deerlodge NF vegetation modeling units and associated Strata 

groups. 

 

   Percent of STRATA in Model 

MODEL TOTAL ACRES STRATA Groups 11 12 13 21 22 23 

1601                 425,745  6 24 2 1 37 35 2 

1602                 394,211  6 26 3 2 23 32 7 

1701                 382,113  6 9 3 10 12 51 15 

1801                 306,390  6 6 7 6 8 66 7 

1802                 412,133  5 7 32 8 0 29 24 

2201                 388,696  6 8 9 2 6 54 21 

2202                 447,796  6 15 14 8 6 37 20 

2301                 323,910  6 18 3 0 23 54 2 

2302                 374,763  6 20 9 1 25 42 3 

2401                 405,589  6 3 47 32 0 8 10 

2501                 230,892  6 11 10 9 9 36 25 

2601                 261,136  6 3 34 26 0 19 17 

2602                 288,802  6 7 30 17 2 27 17 

               4,642,177  average proportion 12 16 9 12 38 13 

 

 

SAMPLING WITHIN STRATA 
 

Upon development of the biophysical strata composing the B-D NF model areas, the next stage 

of the VMAP sampling strategy is to identify potential sites for field review. There are three 

essential considerations in the development of a proposed sample network. First, would like to 

distribute our sample network proportionately across the landscape. Second, it is desirable to 

collect as many good samples as possible. In keeping with the first two principles, the time and 

effort needed to access suggested sample sites must be balanced against the need to acquire a 

certain number of samples. In short, spending excessive effort to visit a few remote sample sites 

may not be as efficient as collecting more, but easier to obtain samples.  
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To set up a spatially proportionate sample design, we created a systematic grid of points with 

500 meter spacing across the entire study area, where each point represents a potential field 

review site. Each point was attributed with a vegetation model identification number, and 

relevant Strata code. The basic assumption is that if all potential sites are reviewed, a 

proportionate sample of landscape features and associated vegetation characteristics will be 

sampled. Given that it will not be possible to visit all sites, further stratification is necessary to 

derive a realistic proposed sample network.  

 

 

Sample Reduction 

 

As a first step towards reducing the potential sample points down to a reasonable number we 

assumed that the existing road network will determine our primary access to proposed sites. Give 

that the amount of time required to obtain and record sample data is limited, we applied a 1 km 

buffer (about 0.5 mile) buffer around the road network. The zone identified by the buffer 

network then represents potential areas within vegetation modeling units that may be visited by a 

sample collection crew with a reasonable amount of effort. An example of this buffer network is 

given below for the Tobacco Root Mountains vegetation sub-model (m2501) in Figure 5.  

 

   
A) Model 2501 STRATA B) STRATA with Roads C) STRATA with Buffered Road 

 

Figure 5. Sample reduction, phase 1 

 

While collection of sample data from sites outside of the road buffer zone may be valuable, the 

amount of time and effort to reach them may be excessive. We therefore focused our proposed 

sample network on sites within the buffer network. This reduced the number of possible sample 

points from 75,067 to 44,822. Despite a roughly 50% reduction, 44,822 points still represents 

approximately 3,500 sample sites for each vegetation modeling unit, and this is still more than 

our initial sampling effort can accomplish in a field season. To further reduce the potential 

sample network, we randomly selected 25% of buffered points within each Strata, within each 

vegetation modeling unit of the B-D NF. This resulted in a network of 11,207 suggested sample 

points across the entire Beaverhead-Deerlodge National Forest, with a minimum of 584, 

maximum of 1,282, and mean of 866 locations in each of the 13 vegetation modeling units we 
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intend to review in the 2009 field season. The process of selecting points within the buffer zone 

is illustrated schematically below in Figure 6, using the Tobacco Root Mountains vegetation sub-

model (m2501) as an example. 

 

   
A) Full Network of Systematic 

Points within the 1km Buffer 

B) Random Selection of 25% of 

Buffered Points in Each Strata 

C) Final Illustration of Suggested 

Sample Sites in Model 2501 

 

Figure 6. Sample reduction, phase 2. 

 

 

Within Tobacco Root Mountains vegetation sub-model (m2501), 614 sample points were 

suggested, based on the reduction procedures outlined above. Comparison of relative proportions 

of land area occupied by the various Strata in m2501 to the percentage of sample points in this 

sub-model suggests a close agreement (Figure 7). This suggests that along with some manually 

refined selection, proportionate sampling of the landscape should be possible using the procedure 

outlined herein.  
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Figure 7. Proof of concept for proportionate sampling in the B-D NF, using the Tobacco Root Mountains vegetation 

modeling sub-unit (m2501)  

 

 

A further component of the proportionate sampling process that was not included in this analysis 

is land ownership and access limitations that might be encountered. In concept, access to sample 

sites on private land may be limited. Taking this into account, sample sites located on private 

land may be omitted during field activities. In an effort to maintain relative proportions of sites 

within each of the strata, eliminated sites can be redistributed to more accessible locations within 

strata of interest.  
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4. Image Classification 

 

Labeling Algorithms 

 The Federal Geographic Data Committee (FGDC) Vegetation Classification Standards 

(FGDC 1997) establishes a hierarchy of existing vegetation classification with nine levels. 

The top seven levels are primarily based on physiognomy.  The two lowest levels, alliance 

and association, are based on floristic attributes. The USDA Forest Service recently released 

the national direction for classification and mapping of existing vegetation to implement the 

FGDC standards and to provide direction for classifying and mapping structural 

characteristics (Brohman and Bryant 2005).  This direction applies to a variety of geographic 

extents and thematic resolutions characterized as map levels.  The Northern Region 

Vegetation Mapping Project is specifically designed to meet this national program direction at 

the mid-level. 

  

 Most attribute labeling of the VMap products were accomplished using eCognition software.  

eCognition operates off of a hierarchy classification scheme and within that scheme, a series 

of functions can be used.  For features easily discernable from image statistics (i.e.  tree, non-

tree; low tree canopy cover, high tree canopy cover), membership functions were used in the 

hierarchy process to separate cover types.   Figure (8) shows an  example of one these 

functions.   For features less discernable (dominance type, tree size), membership functions 

were incorporated with nearest neighbor classification algorithms to provide labeling to the 

image objects.    

 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

   

  

Figure 8.  An example of an eCognition member  

ship function.   The example shows ‘tree’ sample 

data (blue histogram) and ‘ shrub’ sample data 

(black histogram) for one of the image inputs.  

Since there is such good separation between 

’tree’ and ’shrub’ histograms in this example, a 

membership function is created to separate ’tree’ 

from ’shrub’.  At left, the membership excludes 

‘tree’ at 65.5 for this input.   A series of these can 

be created for all image inputs that show 

separation and combined to create outputs.    

Tree shrub 
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The eCognition hierarchy classification scheme sub-divides from general to specific at each level 

of the hierarchy with the classes at each level inheriting class descriptions from parent classes.    

The scheme below shows an example of this structure:    

 
 LEVEL 1: 

 FOREST 

 NONFOREST 

LEVEL2: 

 FOREST 

o 10-40% CANOPY COVER 

o 40%+ CANOPY COVER 

 NONFOREST 

o VEGETATED (10% VEGETATED COVER) 

o NON-VEGETATED (LESS THAN 10% VEGETATED COVER) 

LEVEL3: 

 10-40% CANOPY COVER 

o LOW CANOPY COVER TREE (10-25%) 

o MODERATE-LOW CANOPY COVER TREE (25-40%) 

 40%+ CANOPY COVER 

o MODERATE-HIGH CANOPY COVER TREE (40-60%) 

o HIGH CANOPY COVER TREE (60%+) 

 VEGETATED 

o HERBACEOUS 

o SHRUB 

 SPARSELY VEGETATED 

o WATER 

o ROCK 

 

Implementation of this classification hierarchy produces associated geospatial databases for 

four primary attributes: lifeform, dominance type, tree canopy cover, and tree size class.  

These original image objects were merged to a 5 acre minimum to produce mid level map 

products. 
  

  

Non-forest Labeling Algorithms  

 

The data collected for non-forest cover was done during the field seasons of 2009 and 2010.  

Although a lot of data was collected overall, there was not sufficient data to drive a separate 

classification for each individual sub-model using eCognition.  To circumvent the problem of 

not having enough data, the field data was combined for all of the models and classified with 

‘Random Forests‘ a classification and regression tree model that is part of  the statistical 

software R version 2.72 program.   The algorithm for inducing a random forest was developed 

by Leo Breiman and Adele Cutler, and "Random Forests" is their trademark (Breiman and 

Cutler, 2008.)  The term came from random decision forests that was first proposed by Tin 

Kam Ho of Bell Labs in 1995. The method combines Breiman's "bagging" idea (Breiman, 

1996) and Ho's "random subspace method" (Ho, 1998) to construct a collection of decision 

trees with controlled variations.  

  

 Non-forest classes were taken as far as possible using eCognition. The classes produced for 

all models in eCognition include:  xeric shrub, mesic shrub,  dry grass, wet grass, sparse 
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vegetation, and water (see appendix A for a description of these classes.)  Additional classes 

produced from the Random Forests classifier include:  bunch grass, single stem grass, two 

litter classes, and two classes of xeric shrub canopy cover (10-25% and > 25%).   

  

Map Product Review  

 

As part of the review process, all models were visited in the field the summer of 2010 and 

revised based on data collected from that work.   This review included only tree attributes 

since the expanded non-forest classes had not yet been mapped (non-forest data was collected 

during the review process however.)  The field review process is critical for correction of 

errors associated with the classification and enables a refinement in the final output product 

that otherwise would not be possible.  The resulting classification accuracy numbers (see 

Section 7) directly reflect the improvement that is seen when adequate field time is allowed.  

The B-D VMap is the first project completed where two full seasons of field data collection 

were actually accomplished (on the Eastside VMap almost a full field season was lost to a bad 

fire year) and the improvement in classification accuracy is dramatic, ranging from a 5% to 

23% increase in the four primary classes (DOM60, DOM40, CCV, and TSZ). 
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